
Journal of Computational Physics149,128–147 (1999)

Article ID jcph.1998.6149, available online at http://www.idealibrary.com on

Approximating the Permanent via Importance
Sampling with Application to the Dimer

Covering Problem

Isabel Beichl∗ and Francis Sullivan†
∗NIST, Gaithersburg, Maryland 20899;†IDA/Center for Computing Sciences, Bowie, Maryland 20715

E-mail: isabel@cam.nist.gov, fran@super.org

Received April 16, 1998; revised November 3, 1998

We estimate the asymptotic growth rate of the number of dimer covers of a cu-
bic lattice. Our estimate,λ3= 0.4466± 0.0006 is consistent with the lower bounds
obtained by Hammersley and (later) Schrijver and the more recent improved up-
per bound obtained by Ciucu. Obtaining this estimate is an important step toward
approximating the partition function of the cubic monomer–dimer system. From
the partition function, all of the standard thermodynamic quantities can be eval-
uated. It is well known that computingλ3 is equivalent to computing the per-
manent of a certain 0–1 matrix. We describe an extremely efficient Monte Carlo
algorithm for approximating the permanent. Previous work on Monte Carlo ap-
proaches includes the pioneering results of Jerrum and Sinclair, who use a rapidly
mixing random walk. Our method is inspired by results of Soules on convergence of
Sinkhorn balancing to obtain a maximum entropy, doubly stochastic matrix. We use
the Sinkhorn balanced matrix to generate an importance function that allows us to
do direct random sampling, rather than a random walk that converges to a limiting
distribution. c© 1999 Academic Press

1. INTRODUCTION

We use a new method for approximating the permanent of a 0–1 matrix, based on the
Monte Carlo technique of importance sampling to solve the dimer covering problem in two
and three dimensions, that is, to estimate the asymptotic behavior of the number of dimer
coverings of a regular rectangular lattice. This is an important step toward approximating
the partition function of the cubic monomer–dimer system. From the partition function,
all of the standard thermodynamic quantities can be obtained [7]. We use an excellent
“importance function” that is readily available and fairly easy to compute. The importance
function is obtained from doubly stochastic matrices that are the result of applying Sinkhorn
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balancing to a particular 0–1 matrix and to some of its minors. It is known that Sinkhorn
balancing converges quickly for a completely supported matrix [26, 17] and, as we shall
see, it is also easy to ensure that all matrices encountered are, in fact, completely supported.
(All terminology is defined in Sections 2 and 3.)

The dimer covering problem is a special case of the more general monomer–dimer
problem, where one wishes to count the number of ways of covering a lattice with both
monomers and dimers. An extension of our method applies to the more general monomer–
dimer setting, but the computations are much more elaborate. We hope to report on this in
a later paper. For the present paper, our specific goal is to estimate the asymptotic value,

λd= lim
m→∞

log(perm(Ad(m)))

md
,

whered is the dimension (d is 2 or 3 in our case), and perm(Ad(m)) is the permanent of
a particular(md/2)× (md/2) matrix, to be described shortly. All logs in this paper are to
the basee. Our calculation ofλ2 reproduces known analytic results. Our calculation forλ3

givesλ3= 0.4466± 0.0006. It is worth noting that existing analytic results give extremely
tight bounds on the possible values forλ3. In fact, by combining the results of Schrijver
and Ciucu, we have that

0.440076≤ λ3 ≤ 0.463107.

The organization of the rest of the paper is as follows: in Section 2 we give a history of
the problem; in Section 3 we sketch the main ideas of importance sampling; in Section 4 we
explain Sinkhorn balancing and comment on its relationship with the permanent; Section 5
gives the details of our permanent approximation algorithm with subsections discussing the
variance and some nonstandard programming details; and finally our results forλ2 andλ3

are given in Section 6.

2. BACKGROUND AND HISTORY OF THE PROBLEM

We define abrick to be ad-dimensional(d≥ 2) rectangular parallelepiped with sides
whose lengths are integers. A dimer is a brick whose volume is 2. Anm-brick is a brick
with m units on each side. The number of different ways to fill anm-brick with dimers (with
no holes) we callFd. It is well known thatFd grows exponentially with the volume of the
m-brick, that is withmd in all dimensionsd, and it was proved in [9] that

lim
m→∞

log(Fd)

md

exists. The limit will be denotedλd. Figure 1 shows one way to fill a 6-brick with dimers in
2D. To estimateFd, we would need to find how many ways this is possible for allm-bricks.

There is extensive literature concerning the calculation ofλd. Ford= 2, Temperley and
Fisher [29] and Kastelyn [15] gave an analytic solution,

λ2 = 0.29156090· · ·.

Their method, based on finding a Pfaffian orientation for the lattice [16], does not extend
to dimension 3. The early paper by Fowler and Rushbrooke [6] gave rigorous bounds,
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FIG. 1. Example of one dimer covering of red (r) and black (b) sites.

0≤ λ3≤ 0.54931. The upper bound was improved by Minc [19] to 0.54827 and recently
by Ciucu [5] to 0.463107 by using an elegant application of group theory.

Becauseλd is a nondecreasing function ofd, a lower bound forλ3 is λ2= 0.29156.
This was improved by Hammersley [8] to 0.418347 and by Priezzhev [22] to 0.419989.
A conjecture by Schrijver and Valiant [28] on lower bounds for permanents would imply,
as noted by Minc [20], thatλ3≥ 0.440075. Recently, Schrijver [27] proved that the lower
bound is indeed 0.440076.

It was known [8] that computingλd is equivalent to finding the permanent of a certain
matrix A. Here is what this means: Let us considerd= 2 first. Think of them-brick as a
checkerboard withm squares on a side. We label the squares red and black separately and
arbitrarily as in Fig. 1. There arem2/2 red squares andm2/2 black squares (mmust be even).
We then form an incidence matrixAm of sizem2/2×m2/2 with a 1 inposition(i, j ) if red
squarei touches black squarej , and 0 otherwise. One dimer covering of the checkerboard
means a “path” throughA, that is, a selection of exactly one nonzero element in each row
and column. The dimer covering problem then translates into finding the number of paths
through the matrixA. We assume a periodic boundary condition (=toroidal) so that every
square has exactly four neighbors (north, south, east, and west) and thus, the matrixA would
have exactly 4 ones in every row and column. Whend= 3, them-brick is a cube with side
m, volumem3, and the matrixA is m3/2×m3/2 with exactly 6 ones in every row and
column, because each red or black cube has neighbors on the top and bottom in addition to
north, south, east, and west. We will letai, j denote the(i, j )th element ofA. Unless noted
otherwise, we will assume thatd= 3 for the rest of this paper.

Thepermanentof A, which we will also write as|A| is

∑
σ

m3/2∏
i=1

ai,σ (i ).

Hereσ ranges overSm3/2, the set of all permutations onm3/2 letters. Note that whenA
is a 0–1 matrix, the only terms that contribute to the sum are for those permutationsσ ,
where allai,σ (i ) are nonzero, which is exactly when the set of thoseai,σ (i ) are a path through
the matrix. So the number of paths through a 0–1 matrix, A, is|A|. Note also, that the
permanent of a matrix is similar to the determinant but it lacks the alternating signs of the
terms. (In earlier notation,Fd= |Am|.)

At first glance, both the permanent and the determinant seem to requireO(n!) operations.
However, the determinant is an alternating multilinear form and classic methods of linear
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algebra apply, giving algorithms to do the evaluation inO(n3) operations. Computing
the permanent, however, reallyis difficult. The best known algorithm for computing the
permanent exactly, due to Ryser, [23] requiresO(n2n) operations. This is not a practical
method for this problem because the size of the matrices necessary to findλ3 are greater than
2000× 2000 for thosem’s necessary to obtain statistically reliable estimates of the limit.

The matrix A arising from the monomer–dimer problem has a special, highly regular
structure. Fisher and Temperley [29] and, independently, Kastelyn [15] used the special
structure, find a Pfaffian and thus reduce evaluating the permanent to linear algebra for the
2D case. It is known, however, that the 3D case cannot yield to the linear algebra approach.
For details see Hammersley [8] and Kenyon, Randall, and Sinclair [16].

Approximating the permanent also has been studied by many authors. Karmarkar, Karp,
Lipton, Lovasz, and Luby [14] gave a permanent approximation algorithm whose runtime
grows exponentially with matrix size. More recently, Barvinok [3] proposed a technique
based on “measure concentration.” In Section 5.2 we give some data comparing these
methods to ours for a few sample examples. Jerrum and Sinclair [13] developed a random-
walk algorithm that runs in polynomial time for some important classes of matrices. An
excellent source of results using random walks can be found in the paper by Jerrum and
Sinclair [13]. In [16], possible application is described. These methods could ultimately
give an independent approximation forλ3.

3. IMPORTANCE SAMPLING

We use direct random sampling using an importance function rather than the more widely
used Markov chain random walk approach. Importance sampling is a form of Monte Carlo
sampling designed to reduce the variance of the estimators for a given size sample [10].

One formulation of importance sampling is as follows: we wish to estimate a sum

F(N)=
N∑

j=1

f (σ j ),

where f is a known function, theσ j belong to some set of sizeN, andN is very large. In
our case, for ann× n matrix, theσ j εSn, the permutations onn letters, soN= n! and

f (σ ) =
n∏

i=1

ai,σ (i ).

A simple Monte Carlo method would be to chooseM¿ N samples,σ j , uniformly and
compute (∑M

j=1 f (σ j )

M

)
N

to get an average value off . In other words, take as a “typical” value forf (σ ) the sample
mean (∑M

j=1 f (σ j )

M

)
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and then scale for the size of the sample space,N. Notice that the probability,p(σ ) of
choosing any particularσ is 1/N so that our sum can be written(∑M

j=1 f (σ j )N

M

)
= 1

M

(
M∑

j=1

f (σ j )

p(σ j )

)
.

The technique of importance sampling is to use a nonuniform probability,p(σ ) that is
somehow better than uniform, in order to reduce the variance. Notice that asM gets large

M∑
j=1

f (σ j )

p(σ j )

1

M
→

M∑
j=1

f (σ j )

p(σ j )
p(σ j ) = F(N)

and that this limit will hold foranyprobability distributionp(σ ). The ideal choice forp(σ )
is

p(σ ) = f (σ )

F(N)
.

That is, the weight assigned toσ is equal to its relative contribution to the desired sum. This
choice is ideal because it eliminates the variance,

var2 = 1

M

(
M∑

j=1

(
f (σ j )

p(σ j )

)2
)
− F2→

M∑
j=1

f 2(σ )

p(σ )2
p(σ )− F2

=
M∑

j=1

f 2(σ )

p(σ )
− F2 = F2− F2 = 0.

Of course, thisp(σ ) requires prior knowledge ofF , the answer! Our aim is to get close to
the ideal importance function,p(σ ).

We choose a permutation by choosing one element from successive rows, using an esti-
mate of the percentage of the paths that go through that element (i.e. the probability that a
path goes through that matrix location). We notice that

ai, j |Ai, j |
|A|

is the fraction of paths passing through location(i, j ) and that if, for eachA, we could
evaluate the following matrix, which we will call thematrix balance, m-bal(A), then we
would have a perfect importance function:

m-bal(A) =



a1,1|A1,1|
|A|

a1,2|A1,2|
|A| · · · a1,n|A1,n|

|A|
a2,1|A2,1|
|A|

a2,2|A2,2|
|A| · · · a2,n|A2,n|

|A|
...

...
...

...
an,1|An,1|
|A|

an,2|An,2|
|A| · · · an,n|An,n|

|A|

 .

HereAi, j denotes the minor ofA obtained by deleting rowi and columnj from the original
matrix A.
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Clearly, the(i, j )th element contains the percentage of paths that go through location
(i, j ). The mapA→m-bal(A) is known as the Bregman map and has been studied by
Bregman [4], Bapat [2], and Linial, Smorodnitsky, and Wigderson [17]. Note thatm-bal(A)
is doubly-stochastic; that is, its entries are all nonnegative and all the rows sum to 1, as do
all the columns. We choose a “perfect” path through the matrix as follows:

(1) In row 1, we select columnj with probability

a1, j |A1, j |
|A| .

Notice that if we do select columnj , then not only musta1, j 6= 0 but also the permanent
of the minor |A1, j | must be nonzero and so we know that theremustbe a path in the
minor that along witha1, j gives a path in the matrixA. We say thatai, j is supportedif
there exists a path inA that goes through position(i, j ). Soai, j is supported if and only if
m-bal(A)i, j 6= 0.

(2) Look at the minorA1, j obtained by deleting row 1 and columnj from the original
matrix A and matrix-balanceA1, j . In the first row (obtained from the second row of the
original A matrix), an element will look like

a2,k

∣∣A(1, j ),(2,k)∣∣
|A1, j | ,

where|A(1, j ),(2,k)| is the permanent of the(n− 2)× (n− 2)minor of A obtained by deleting
row 1, column j and row 2, columnk. Select one particular columnk of row 2 with
probability

a2,k

∣∣A(1, j ),(2,k)∣∣
|A1, j | .

(3) Again take the minor ofA deleting rows 1 and 2 and columnsj andk. Minor-balance
that minor. Select another column, as above, etc.

...

(n) Continue in this way, until there is a 1× 1 matrix left. This final matrix must be a
nonzero because at the previous (and every) stage of this procedure we select a nonzero
element with nonzero probability. But that element is an element ofA (which thus must be
nonzero) times a permanent of a minor which is also nonzero.

So, if we were able to get the minor-balance of a matrix easily we would have|A| exactly,
namely the product of the inverse probabilities chosen at each stage. That is,

|A| = |A|∣∣A(1, j1)∣∣
∣∣A(1, j1)∣∣∣∣A(1, j1)(2, j2)∣∣

∣∣A(1, j1)(2, j2)∣∣∣∣A(1, j1)(2, j2)(3, j3)∣∣ · · · ∣∣A(1, j1) ··· (n−1, jn−1)

∣∣.
Unfortunately, knowingm-bal(A) is equivalent to knowing|A| and so computing it is
intractable [12].

There is an approximation tom-bal(A) available in the Sinkhorn balance ofA [25, 26].
This is the importance function that we use to calculate the dimer constants. In principle,
one can Sinkhorn-balance a matrix in polynomial time [17].
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4. SINKHORN BALANCING

The Sinkhorn balance of a matrix,B= s-bal(A), is a doubly stochastic matrix obtained
from A by multiplying by diagonal matricesD andE, B= D AE. The (i, j )th entry ofB
we callbi, j . Sinkhorn [25] discusses why this is possible and Soules [26] gives convergence
information. For more information on the mathematics of Sinkhorn balancing see [1, 18].
In practice, instead of determiningD andE directly, we Sinkhorn balance by first dividing
all rows ofA by their sum. This makesA row stochastic but possibly not column-stochastic.
So divide all columns by their sum. This makesA column stochastic, but possibly not row
stochastic. Continuing alternatively with rows and columns converges tos-bal(A). Sinkhorn
balancing is thus an application of the method of iterating projections in Hilbert space
[17, 24].

Soules [26] shows that Sinkhorn balancing converges linearly when all elements are
supported. We take advantage of this by predetermining the unsupported elements and
setting the Sinkhorn balance of those elements to zero (to which unsupported elements
would eventually converge) before doing the balancing computation. By an unsupported
element we mean an element(i, j ) of the matrix that is on no path. Recall that a path in
a matrix is a selection of one nonzero element from every row in the matrix, so that every
column occurs exactly once. Hopcroft and Karp [11] have anO(n5/2) algorithm for finding
paths through a matrix. It is possible to alter their algorithm so that after finding one path
in the matrix deciding if another element is on a path isO(n).

4.1. Relationships between s-baland m-bal

The purpose of this section is to give a heuristic explanation of why the algorithm
works as well as it does. Recall from Section 3 that ideallys-bal(A)=m-bal(A), that
is, bi, j = |Ai, j |/|A|. Unfortunately this is not the case. In fact, for some matrices, the ratio
of individual terms can be exponential in the size of the matrix, although these never occur
for the dimer problem, except for very small minors. However, it is the case that the Sinkhorn
balance is, in a loose sense, “as good as it can be.” In particular, because the Sinkhorn balance
maximizes entropy for a given zero pattern in the set of doubly stochastic matrices, it tends
to minimize the permanent, and a minimum permanent matrix for a given zero pattern would
have the ideal property thats-bal(A)=m-bal(A). We present some empirical evidence for
the relationship between maximum entropy and minimum permanent and also give a novel
proof of the maximum entropy property. In addition we prove that the effect of importance
sampling is to choose a path such that the expected value of the ratio of|Bi, j | to |B| equals
one. We also use the properties of importance sampling to calculate the expected value of
individual probabilities and their relation to row sums.

To explain in a little more detail, we first show that

bi, j |Bi, j |
|B| = |Ai, j |

|A|

for bi, j 6= 0 (supportedai, j ). This is Theorem 1. Fors-bal(A)=m-bal(A), we would like
|Bi, j |/|B| to equal one. This is unfortunately not the case. It is only true that|Bi, j |/|B| =1
when all the row sums ofA are equal. This is in Ando [1]. Ando also shows thatA has
all row and column sums equal if and only if its Sinkhorn balance is a matrix with mini-
mum permanent among doubly stochastic matrices with a given zero pattern. The entropy
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of a doubly stochastic matrixB is −∑i, j bi, j log(bi, j ). The Sinkhorn balance maximizes
entropy. This is Theorem 2. When the permanent is minimized, the entropy of that matrix
is maximized, if all the row and column sums are equal. However, if row sums are not all
equal, it is possible that there is no matrix that minimizes the permanent for a given zero
pattern. As a worst case we look at the upper triangular matrix with a 1 inposition(n, 1).
For n= 4 this is 

1 1 1 1
0 1 1 1
0 0 1 1
1 0 0 1

 .
We will refer to this as the “bad” matrix. It is as far from having equal row and column
sums as possible;|Bi, j |/|B| =e±n/2 for this matrix.

Figure 2 shows iterations of the Bregman map on this matrix. We plot permanent versus
entropy. The point at the top of the curve, maximizing entropy, is the Sinkhorn balance,B.
By iterating the Bregman map onB, the points to the right are obtained. In this case, we can
compute the inverse of the Bregman map to obtain the points to the left ofB. Even in this
worst case, the maximum entropy matrix is not that bad an approximation to the minimum
permanent matrix for the purposes of this problem because of Theorem 3, which says that
the expected value of|Bi, j |/|B| is 1.

FIG. 2. Iterations of the Bregman map on the “bad” matrix.
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FIG. 3. Random walk through Birkhoff polyhedron.

A random walk on theBirkhoff polyhedron, the set of doubly stochastic matrices, also
supports the observation that the maximum entropy matrix is not a bad approximation to
the minimum permanent matrix. We illustrate this in Figs. 3 and 4. The random walk starts
at the Sinkhorn balance of the 11× 11 “bad” matrix and we plot permanent versus entropy.
Figure 4 is a three-dimensional version of Fig. 3, where we plot elapsed time as thez-axis.

The proof of the theorems follows.

LEMMA 1. The product along any path through B equals|B|/|A|.
Proof. B= s-bal(A), soB= D AE, whereD andE are diagonal. So,|B| = |D||A||E|

and, hence, for any pathσ

|B|
|A| = |D||E| =

∏
1≤i≤n

di

∏
1≤ j≤n

ej =
∏

1≤i≤n

di eσ(i ).

On the other hand,

∏
1≤i≤n

bi,σ (i ) =
∏

1≤i≤n

di ai,σ (i )eσ(i ) =
∏

1≤i≤n

di eσ(i ),

where the last equality holds becauseA is a 0–1 matrix.j
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FIG. 4. Random walk through Birkhoff polyhedron with time as the third dimension.

THEOREM1. For all i , j,

|Ai, j |
|A| = bi, j

|Bi, j |
|B|

Proof.

bi, j |Bi, j | = bi, j

(∑
σ̄

∏
k 6=i

bk,σ̄ (k)

)
,

where the sum ranges over all(n− 1)-paths ¯σ , omitting i and j . Hence,

bi, j |Bi, j | =
∑
σ

n∏
k=1

bk,σ (k),

where theσ range over all permutations whereσ(i )= j . Therefore,

bi, j |Bi, j | = |Ai, j | |B||A|

because there are|Ai, j | such product terms and by the previous lemma, each one is equal
to |B|/|A|. j
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LEMMA 2. If B is the Sinkhorn balance of a completely supported, 0–1 matrix, A, then
for any doubly stochastic matrix, D, whose support is contained in the support of A we
have that ∑

i, j

di, j log(bi, j ) = log

( |B|
|A|
)
.

Proof. BecauseD is doubly stochastic with support contained in the support ofA, we
may write

D =
∑
σ

λσ Pσ ,

where thePσ are permutation matrices whose nonzero elements occur at nonzero locations
in B and theλσ are positive with ∑

σ

λσ = 1.

For eachi, j , we have that

di, j =
∑

λσi, j ,

where the sum is over those permutations,σi, j that are nonzero at thei, j element of the
matrix D. BecauseB is the Sinkhorn balance ofA, we have for eachσ∏

bi,σ (i ) = |B||A|
by our first theorem. Therefore,

∑
i

log
(
bi,σ (i )

) = log

( |B|
|A|
)

and, hence,

∑
σ

λσ
∑

i

log
(
bi,σ (i )

) = log

( |B|
|A|
)
.

Re-arranging this double sum to collect the coefficient of logbi, j gives

∑
i, j

(∑
λσi, j

)
log(bi, j ) = log

( |B|
|A|
)
.

The result now follows from the expression fordi, j as sums of theλσi, j .

THEOREM 2 (Maximum entropy). If D is any doubly stochastic matrix with support
contained in the support of B, then

−
∑
i, j

di, j log(di, j ) ≤ −
∑
i, j

bi, j log(bi, j ).
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Proof. By the generalized arithmetic–geometric mean inequality (see, for example,
[21]),

−
∑
i, j

di, j log(di, j ) ≤ −
∑
i, j

di, j log(bi, j )

and the result follows from Lemma 2.j

Note that we may choose

di, j = |Ai, j |
|A| .

THEOREM3. The expected value is

E
( |Bi, j |
|B|

)
= 1.

Proof.

E
( |Bi, j |
|B|

)
=
(

N∑
k=1

|Bi, j |
|B|

)/
N,

whereN is the number of samples. Fixingi , the probability that|Bi, j |/|B| is chosen on
row i is bi, j . So in the long run,

∑N
k=1 |Bi, j |/|B|

N
→

n∑
j=1

bi, j
|Bi, j |
|B| =

|B|
|B| = 1. j

THEOREM4. The expected value is

E
(

1

bi, j

)
= mi ,

where mi is the number of1’s in row i.

Proof. Suppose rowi is fixed:

E
(

1

bi, j

)
=

N∑
k=1

1

bi, j

/
N.

The probability thatj is chosen in rowi is bi, j . Thus,

N∑
k=1

1

bi, j

/
N =

N∑
j=1

bi, j
1

bi, j
= mi . j
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5. PROCEDURE

Here then is the procedure:

(1) Sinkhorn balanceA. This produces a doubly stochastic matrixB with (i, j )th element
bi, j . Because row 1 sums to 1, we can select a column,j1, with probabilityb1, j1. We will
write this simply asbj1 because at each stage we will always select from the first row of the
Sinkhorn balanced matrix.

(2) Sinkhorn balance the(n− 1)× (n− 1)minor A1, j1 giving matrixB(1) with elements
b(1)i, j , select a columnj2, with probabilityb(1)j2 , where we use the first row ofB(1) as prob-
abilities.

...

(k) Sinkhorn balance the(n− k+ 1)× (n− k+ 1) minor of A obtained by removing
the first(k− 1) rows and columnsj1, . . . , jk−1 from A. Call the resulting matrixB(k−1).
Select a columnjk from the first row ofB(k−1) with probabilityb(k−1)

jk .

...

(n− 1) Continue until there is only a 1× 1 matrix left.

Then(1, j1), (2, j2), . . . , (n, jn) is a path of 1’s inA. The value of|A| is then approx-
imated by the mean of terms like

1

bj1

1

b(1)j2

1

b(2)j3

· · · 1

b(n−2)
jn−1

.

Notice that this is the same as

a1, j1

bj1

a2, j2

b(1)j2

a3, j3

b(2)j3

· · · an−1, jn−1

b(n−2)
jn−1

= 1

p(σ )
.

5.1. Our Method as Importance Sampling

In our case, the sample space isSn the set of permutations onn letters, wheren is the size
of the matrix we need to evaluate. For dimension 3,n is m3/2 and so, for example, for an
18× 18× 18 cube the matrix will have size 2916× 2916 andSn=S2916will contain 2916!
elements. Our estimatorf (σ )/p(σ ) is the characteristic function of a matrix path ofA inSn

multiplied by 1/p(σ ), which is obtained from the product of estimates of the relative number
of paths at each stage of the selection. In other wordsf (σ )= 1 if a1,σ (1),a2,σ (2), . . . ,an,σ (n)

are all 1’s in the matrixA and p(σ )= ∏ b(k)σ (k). σ (1)= j1, σ (2)= j2, σ (3)= j3, . . .. Note
that we compute the importance function as we proceed.

This is a subtle but important point. The Sinkhorn balance is not used as the estimator but
rather as the importance factor for selecting and scaling the estimate. The mean converges
to the permanent because the naive method converges to the permanent. How good or
bad the Sinkhorn balance is as an estimate of the minor balance does not affect what the
approximation converges to but rather how fast it converges. (In our case it converged fast
enough to get extremely good error bars.)
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FIG. 5. Comparison of convergence rates of permanent approximation algorithms, showing error. This is the
11× 11 “bad” matrix.

5.2. Performance

We compare the rates of convergence for the known permanent algorithms in Figs. 5
and 6. Figure 5 is the 11× 11 “bad” matrix. Figure 6 is the 32× 32 dimer matrix and we
plot the error. We compare our technique with the methods of Barvinok [3] and Karmarkar,
Karp, Lipton, Lovasz, and Luby [14]. The matrix used is the 11× 11 “bad” matrix, that is,
in a sense, a worst case for our algorithm.

5.3. Variance

The variance, var, in this calculation is by definition

var2 = 1

N

∑
σ

(
s2
σ − |A|2

)
,

whereN is the number of samples ands is the value obtained from a single sample, namely
p(σ )−1 where theσ is a permutation onn letters whose selection is described in Section 5. So

s2
σ =

(
1

p(σ )

)2

and

var2 = 1

N

∑
σ

(
1

p(σ )

)2

− |A|2.
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FIG. 6. Comparison of convergence rates of permanent approximation algorithms, showing the error of the
log of the mean. This is the 32× 32 dimer matrix.

Because of importance sampling, the probability that a particular pathσ will be chosen is
p(σ ). So,

var2→
∑
σ

1

(p(σ ))2
p(σ )− |A|2,

whereσ ranges over all supported paths. Simplifying, this gives in the limit

var2→
∑
σ

1

p(σ )
− |A|2 = |A|

(
1

|A|
∑
σ

1

p(σ )
− |A|

)
.

But this is

|A|
(〈

1

p(σ )

〉
− |A|

)
because there are|A| paths. Here〈·〉 denotes the uniform average overall paths, not just
paths chosen by importance sampling. Thus we have

var2 = |A|2
(

1

|A|
〈

1

p(σ )

〉
− 1

)
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and the relative variance is

var2

|A|2 =
1

|A|
〈

1

p(σ )

〉
− 1.

If we think of p(σ ) as a probability distribution on the pathsσ, we note that the relative
variance is determined by the degree to whichp(σ ) approximates the “perfect” distribution
which would give each path weight equal to 1/|A|.

It is also worth noting what the variance would be if we just chose 1/bj uniformly.
Without importance sampling var2 would be

1

|A|
〈

1

p(σ )2

〉
− 1,

a very large quantity.

5.4. Data Structures Used in Permanent Computation

The matrixA used in this calculation is sparse. It contains 6n nonzero elements whereA
is n× n. We make use of the sparsity by maintaining, instead of the matrixA, a row-matrix
and a column-matrix, which contain respectively for a given row, the column numbers of
the next nonzero element and for a given column the row numbers for the next nonzero
element. The actual values of the elements in the Sinkhorn balancing are kept as one array
with pointers into it from the row-matrix and the column-matrix.

Sinkhorn balancing a minor iterates in two steps, row balancing and column balancing.
For our data structure row balancing is straightforward. Column balancing is more elaborate.
Because we need to keep a record of which columns ofA are to be used in the minor we
wish to balance, we maintain this information by using a linked list of the active columns.
When we delete a column (by choosing it in a path) we do so by marking it as deleted and
then on the next traversal of the active-column list we do the delete from the list.

5.5. Computinglog(|A|) when|A| is not Representable

One of the challenges in this calculation is that|A| is not representable in floating point
when the matrix size is large. For example,λ(14)

3 is around 0.45, so log(|A14|)= 0.45∗
142/2≈ 617. Thus|A| ≈e617. However, the logs of the individual samplesarerepresentable
and we must use these, instead of actual estimates of the permanent. We want to estimate

λ
(m)
3 = log(Perm)/m3,

where

Perm≈
〈

1

p

〉
= 1

N

N∑
i=1

∏
j

1

bj
.

But ∏ 1

bj
= exp

(
log
∏ 1

bj

)
= exp

(∑
(−1) log(bj )

)
.
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All our samples of
∑
(−1) log(bj ) are approximately the same size. LetC be the smallest

integer contained in all of these terms. That is,C is the minimum over all samples of

⌊∑
(−1) log(pi )

⌋
.

So,

∏ 1

bj
= exp(C + Ri ),

whereRi is the remainder afterC is subtracted from the log of the estimate of samplei . So,

1

N

N∑
i=1

∏
j

1

bj
= 1

N

(
N∑

i=1

exp(C) exp(Ri )

)

= exp(C)
1

N

∑
i

exp(Ri )

= exp(C) E(exp(Ri )).

Thus,

λ
(m)
3 = log(|A|)/m3

≈ log(exp(C) E(exp(Ri )))/m3

= C + log(E(exp(Ri )))/m3.

Thus, it is possible to get the log of the average permanent even though each permanent is
not representable by using the average of exp of the remainder whichis representable.

6. OBSERVATIONS AND RESULTS

It is interesting to observe that on the whole, for different paths, the same probabilities
occur and in approximately the same proportions. In other words, the probability distribution
p(σ ) is observed to concentrate near the uniform distribution 1/|A|.

Figure 7 shows calculations forλ2, and Fig. 8 shows calculations forλ3. The error bars
in these figures were obtained by taking twice the standard deviation over

√
N, whereN

is the number of samples. For both two and three dimensions we fit the input points with a
quadratic,y=α + β/x2, wherex are our valuesm and the correspondingy are the values
log(|Am|)/md, d= 2, 3. Theα’s, the limiting values, are our approximations toλ2 and
λ3. We use 1/x2 instead ofx because it is more stable numerically to findα by assuming
1/x2= 0 rather than taking a limit asx gets large. The error bars on the limiting valueα
were obtained by doing a similar regression on the error obtained from the first fit.

Forλ2, our result 0.291 agrees extremely well with the known analytic value, 0.29156090.
Forλ3 then we get 0.4466± 0.0006.



FIG. 7. λ
(m)
2 values fit withy=α+β/x2.

FIG. 8. λ
(m)
3 values fit withy=α+β/x2.
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